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Transfer-matrix-like properties of the XY model 

J S Denbigh 
Department of Physics, King's College, Strand, London WC2R 2LS, UK 

Received 3 May 1974 

Abstract. Although the XY model cannot have a transfer matrix in the sense of an king 
model, it is shown that the partition function is as if there were one. The partition function 
for the closed anisotropic XYchain with N sites and arbitrary external field is shown to take 
the form 2; + gkAf where the g, are integers. This means that there could be a transfer 
matrix of infinite size, the 1, being its eigenvalues and the g, being the corresponding 
degeneracies. 

1. Introduction 

1.1. Purpose of this paper 

For those one-dimensional models which can be solved by the method of transfer 
matrices the partition function, Z,, for a chain of N sites takes the form 

zN = g k A :  
k 

where I / . k l  2 I A k +  The number of k may not exceed the number of states per site and 
may be infinite as in the case of the classical Ising model. A grand partition function, 
Z ( W )  may be constructed as follows : 

c4 

X ( W )  --= Z , W N - '  for some N o .  
N = N o  

Provided that ck IgkiLpI  is convergent and the 
other than zero it may be shown that 

are bounded and have no limit point 

Any sequence {Z,} satisfying the conditions above will be called a 'transfer matrix form'. 
The work described in this paper was undertaken with the possibility in mind that the 

transfer matrix form may apply to many systems which do not have transfer matrices 
of a conventional kind. There would clearly be advantages if this were the case. The 
variation of the partition function with the size of the system would be easy to visualize. 
The grand partition function would have simple poles at the 1; with residues equal to 
- & .  If the 2, were evaluated numerically for small N by direct evaluation of the 
eigenvalues (eg Bonner and Fisher 1964), Pade analysis could be applied to obtain ,lo, A1 
etc. By this method one could obtain both the behaviour of finite systems and of the 
infinite system. Unpublished numerical work of this kind by the author strongly suggests 
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that the partition function of the closed field-free anisotropic Heisenberg chain is a 
transfer matrix form. 

J L Martin (private communication) has proposed a form of transfer matrix of 
infinite size applicable to various models including the open X Y  and open Heisenberg 
chains. His work as yet has not been proved fully rigorously. The elements of the vectors 
on which his matrices act are not related to the states of the last site and have no obvious 
physical significance. 

1.2. Layout of the paper 

In 9 2 the X Y model is defined and the formula for its partition function in a form similar 
to that obtained by Katsura (1962) is stated. There is a brief derivation and discussion 
of the result. The partition function consists of four terms and the way in which each 
depends on N is not very obvious. In 9 3 each term is re-expressed in the form 

m 

A N  n(1- LN), 
k =  1 

A and the tk being independent of N .  From here it follows fairly easily that the solution 
has the form 1: + Zp= I g k l c .  In 5 4 the position of all the l k  and their behaviour with 
temperature and external field are discussed. The positions of the poles of the grand 
partition function are examined. In the final section all the results obtained are briefly 
stated. There is a discussion of the X Ymodel with slightly different boundary conditions. 

2. The partition function of the XY model 

2.1. Introduction to the X Y  model 

The Hamiltonian for the model under consideration is given by 
N N 

HN = -J C (l+y)oxioxi+l+(1-y)o,io,i+l-’ 1 Gzi .  (2.1) 
i =  1 i =  1 

Here oxi ,  oYi, ozi are Pauli operators for the ith site. The (N + 1)th site is taken to be the 
same as the 1st site, thus effectively arranging the sites in a closed loop. J, B, y are 
arbitrary parameters representing the strength of interaction, the external field and the 
degree of anisotropy between the X and Y interactions. 

The problem of finding the partition function was essentially solved by Lieb et a1 
(1961). They solved the problem for infinite N and pointed out how it could be solved 
for finite N .  Katsura (1962) obtained the partition function for an even number of sites 
and discussed the thermodynamic properties of the model and compared them with 
those for other models. In the next subsection a more general result is stated for an odd 
number of sites as well. The method of derivation is similar to that used by Katsura. 

2.2. Statement and method of the solution 

Suppose that ZN(fl) is the partition function for HN as given by equation (2.1) and 
/? = ( k T ) - ’ .  Then 

z,x21-N = n cosh v,+ n cosh v,+ S y  n sinh v,+ SOS: n sinh v,. (2.2) 
,€9+ 4 €9- q s 9 ,  q a 9 -  
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Here the following definitions apply : 

1 ,  P(2J+B) > 0 

S, E 0, P(2J+ B)  = 0 

- 1,8(2J+B) c 0 

(2.3) 

9+ is the set { ( n / N ) + ( 2 n / N ) j }  and 9- the set { ( 2 n / N ) j } .  Here j must be an integer and 
the elements of 9, and 9- are modulo 2n. 

The method of solution used was by first expressing the Hamiltonian in terms of 
Fermi operators, Pk, Q k  as described by Lieb et al(1961) and Katsura (1962). A proper 
orthogonal transformation creating a new set of Fermi operators was performed as 
follows : 

I 1,4J2-B’ > 0 1 -1 ,4J2-B2 < 0 

S o  E 0,4J2-B2 = 0 ,  

vq E IP[(B-2J cos q) ’+(2Jy  sin q)2]1’21. 

. sin(& + +t)Pb]  

sin(qk + 4n)Qb + cos(@ + an)Pb]. 
1 

p , = -  1 [ 
J N  ,€9* 

H N  becomes 

$Z+U)$ 1 [ (B-2Jcosq )Xq+2yJs inqY , ]  
,€P+ 

+ 81 - U)$ 1 [ ( B  - 25 cos q)X ,  + 2yJ sin q Y,]. 
q €9- 

Here 
N 

U E n o z k ,  
k =  1 

X 4 -  Q’P‘ 4 4  -P’Q’  4 4  + Q ’ - , P L 4 - P - , Q I q  

Yg E QbP’_,-P’- ,Q~+PhQ‘_,-Q’- ,Pb.  

By a further set of proper orthogonal transformations on the Pb, Qb 

( B  - 2 5  cos q ) X ,  + 2yJ sin q Y, becomes 2ic4(o,, + o, - ¶). 

Here 

cq = I(B- 25  cos 4)’ + (2Jy  sin q)’1 l i2  if q # 0 or n 

if q = 0 or n = B - 2 J  COS 

and ozq = iP,Q,. Hence 

HN = -$(I+ U )  1 cqozq-81- U )  1 Cqnzq .  

4&+ 4 d -  

It can be shown since all the transformations are proper orthogonal ones that 
U = FIqEJt ozq and that the P , ,  Q ,  for q E 9, are a set of Fermi operators obtainable 
from the P , ,  Qk by a similarity transformation. Using the fact that $Z + U) and 81 - U )  
are projection operators whose product is zero one may deduce the partition function 
from equation (2.4). 
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2.3. Discussion of the above solution 

Since the proof of the above formula has only been sketched several points will be made 
in corroboration. 

(i) This formula agrees with that obtained by Katsura (1962) when N is even. 
(ii) It is possible to show that 2 is unaltered by changing the sign of the external 

field. When N is even each of the four components of 2 is unaltered when B is reversed. 
When N is odd reversing the field causes the 1st and 2nd components and the 3rd and 
4th components to be interchanged. 

(iii) Letting B = 0 and y = 1, the king case for zero field is obtained. Each vq 
becomes 12J/?I, So = 1, S, = sgn(2Jfl) and Z X ~ , - ~  becomes coshN(2J/?)+sinhN(2J/?) 
which agrees with the well known result (eg Stanley 1971, p 133). 

(iv) Suppose IBJ < 1251. Then So = 1 and S ,  = sgn(/?J). In the antiferromagnetic 
case the last two terms combine to give a quantity which is always positive when N is 
even and negative when N is odd. This corresponds to the physical argument that in 
the antiferromagnetic case alternating spins try to orientate themselves in opposite 
directions. When N is odd they do not match up round the ring and this gives rise to a 
larger free energy and a smaller partition function. When N is even the spins match up 
and the partition function is larger. In the ferromagnetic case the spins tend to point in 
the same direction and always match up leading to a greater partition function. This 
corresponds to the fact that since now both So and S ,  equal 1 the last two terms always 
combine to give a positive quantity. Bonner and Fisher (1964) showed numerically that 
for the closed Heisenberg chain this alternating effect exists in the antiferromagnetic case. 

(v) If IB( > 1251, So = - 1 and the last two terms of the partition function tend to 
cancel. Physically this might correspond to supposing that the transverse field is now 
so large that the spins tend to orientate themselves towards it anyway, and the matching 
or antimatching effect does not take place. 

(vi) The formula agrees with that obtained by Thompson (1 972) apart from the signs 
of the four terms. In his proof Thompson does not appear to have properly considered 
the cases when q = 0 or n. 

3. Reduction of the partition function to transfer matrix form 

3.1. Introduction 

In this section each of the four components of the partition function just obtained is 
first re-expressed in the form AN ll:= , (1 - tLN). Taking the first component as typical 
the method used is essentially as follows : putting cos q = &z + l/z), cosh vq can be nearly 
expressed as an infinite product of terms, (1 - z / tk ) .  The terms of nq cosh vq will be 
recombined to form nknq (1 - Zq/ tk )  times some simple function. nq (1 - zq/ tk )  is 
simplified with the aid of a lemma stated below to become (1 - ( L N ) .  

Having achieved the form A N  n?= (1 - t L N ) ,  this can without much difficulty be 
re-expressed as AN( 1 + CT= g , A j  N ) .  

3.2. Re-expressing cosh vq in terms of functions derived from its zeros 

Let z E eiq so that cos q = t (z+z-  l )  p, say. Let vq be called ~ ( z ) .  
From equation (2.3) 

v," = / ? 2 [ B Z + 4 5 2 y 2 - 4 B J ~ ~ ~ q + 4 5 2 ( 1 - y 2 ) ~ ~ ~ 2 q ] .  (3.1) 
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Since cosh v is an analytic function of vz everywhere and vz(z) is an analytic function of 
z except at  z = 0, cosh v(z) is an analytic function of z everywhere except at z = 0. 

Let us now consider the zeros of cosh v(z). These occur when v(z) = (k+ 1/2)in for 
some integer k. Inverting (3.1) one obtains 

B 2 [yZB2 - (1 - y2)(4J2y2 - $/B2)] l i2  

2J( 1 - r2) (3.2) 

and z = p + ( p z  - 1)liz. Using these equations all the zeros of cosh v(z) may be obtained. 
Each such z yields a zero of order one since dcosh v/dv = sinh v # 0 whenever 

If IzI = 1, p is real and by equation (2.3) v2(z) is real and positive so cosh v(z) is non- 
zero. Therefore, no zeros lie on the unit circle. Since p = g z  + z- ') if z1 is a zero so 
also is z; '. Let the zeros outside the unit circle be ordered in some way to give tl, tz, 
etc. They may be ordered so that 2 or so that < 2 k + l r c Z k + 2  correspond to 
v(z) = (k+ 1/2)iz. When k becomes large 

P =  

v = ( k +  1/2)in. 

B f (1 - y y v / p  
2J( 1 - r2) P" 

B f (1 - y2)'"v/B z1: 
J(1 -r2) (3.3) 

Since v = (k+ 1/2)in it is clear from (3.3) that the number of tk in the circle 

(zI < R + constant x R 

as R .+ 30. CkI(kl is convergent if 7 > 1. This means that the infinite product, 
m 

W(Z) n (1 - z/tk) ez 'ck  

k =  1 

is convergent. W(z) is called the canonical product of genus 1 (Copson 1935, $7.5, 
5 7.51). W(z) is analytic everywhere and has zeros at the 5,. Let U(z) be such that 

(3.4) 

Because the zeros of W(z)W(z-') coincide with those of cosh v(z), U(z) is analytic 
everywhere except possibly at the origin and infinity and it has no zeros. 

cosh v(z) = W(z)W(z- ')U(z). 

3.3. Examination of U ( z )  

Let us imagine what happens to the arguments of the above functions as z passes right 
round the unit circle. As has been said above, v(z) remains real and positive and so does 
cosh v(z). Hence arg cosh v(z) remains unchanged. Since W(z) is analytic and has no 
zeros inside or on the unit circle arg W(z) is also unchanged by passing round the unit 
circle. Hence thesame is true for arg W(z- ')andlikewise for arg U(z). Let V(z) = In U(z). 
V(z) is analytic everywhere except possibly at the origin and infinity. Because arg U(z) 
is unaltered by passing round the unit circle, V(z) is unchanged by passing round it. 
Hence V(z) is uniquely defined. Because of these properties V(z) has a Laurent expansion 
and can be expressed as U,, + V,(z) + Vz(z- ') everywhere except at the origin. Vl(z) is 
analytic everywhere and can be expressed as C;= Because v(z) = v(z- '), 
U(z) = U(z-') and Vz(z) = Vl(z). 
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It is now necessary to  consider the behaviour of V(z) as IzJ -+ 00. By a theorem by 
Borel (Copson 1935), for any radius p, there is a circle, IzI = R, outside it such that 
W(z) > exp( - R('+ ')) on it for any t > 0. If R is large enough then 

\cosh v(z)l < exp R" + ') 

on it. Let this circle be labelled r. On r, [cosh v(z)/W(z)l < exp(2R('+ 'I). 
It is possible to choose two contours, a1 and a,, close to r, one just outside it and 

the other just inside it, such that lcosh v(z)l > 0.5 everywhere on a,  and a,. This is done 
by avoiding the zeros, tk, and remembering that for large IzI, v(z) 2: pJ(1 - Y ~ ) ' / ~ z .  For 
sufficiently large R, using another theorem by Borel, it is possible to  say that 

1 W(z)J < exp(R(' + ')) 

on al and a,. Hence 1 W(z)/cosh v(z)l < 2 exp(R(' + ')) on a,  and a,. Since this function 
is analytic between a,  and a, and applying the maximum modulus theorem 

cosh v(z) I I > 0.5 exp( - R('+ 'I) 

on r. 
Because W(z) is analytic everywhere and has no zeros inside the unit circle it is 

possible to  say that if IzI 2 2 then I ,  < \W(z-')[ < I ,  for some positive I , ,  1,. Putting 
V(z) = (cosh v(z)/W(z))W(z- ') and combining the above results it is possible to say that 
for any positive E and p, there is an R > p such that on Iz( = R, 

exp( - R" + ')) < I U(z)l < exp(R(' + 'I). 

Hence - R('+ ') < RIV(z) < R" + ') on this circle and likewise for RIV,(z). 

vergence greater than r, then for k > 1 
It  is now necessary to use the fact that if w(z) = wjzJ and has a radius of con- 

Rlw(r eie)r-k e-ike dt'. 

This can be deduced by putting the right-hand side equal to 

f j2' (&,.rj eije+ wj.rj e - i j e ) r - k  ,- ik@ dt' = w k .  
27~j=o e = o  

Applying this result to V,(z), one obtains 

JRIVl(R eie)lR-kdt'. 

Letting R + CO one deduces that vk = 0 if k > 1. Hence 

V(z) = u,+u,z+u,z-'. 

3.4. Obtaining thejrst  two components of Z ,  

Two lemmas which can easily be proved are now stated. Suppose we have the set 
zo, z, . . . zN- , where zj = zo e2nij1N, j being an integer. 
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Lemma 1. 

Lemma 2. 

1 N - 1  

N j = o  
- zj = z; if k = NI for some integer I 

= o  otherwise 

N -  1 n (l-zj) = 1-z:. 
j = O  

This follows from the fact that the Nth roots of z: are the zj. 

From equation (3.4) 
The set 9- corresponds to  zj when zo = 1 and the set 9+ to z j  when zo = eniiN. 

n cosh v, = n W(zj )  n W(z,: ') exp 
j i 

Using Lemma 1, 

V ( z j )  = NU, i f N 2 2  
i 

using lemmas 1 and 2 and assuming that N 2 2.  Now if zje{zj) then so also is z,:'. 
Hence 

N -  1 N -  1 n W(Z7') = n W(Zj) 
j = O  j = O  

m - n coshv, = n (1-<;N)2eN"o 
,El- k =  1 

m n cosh v, = n (1 + {kN)2 eNuo for N 2 2.  
,E2 + k =  1 

(3.5) 

3.5. Evaluating the second two components 

Let sh(v) sinh(v)/v. Since sh(v) is an analytic function of v2, and v2 is an analytic 
function of z ,  sh v(z) is analytic everywhere except at the origin. The zeros of sh v(z) 
occur when v, = ikz for k equal to  any integer except 0. Let the zeros outside the unit 
circle be arranged in some order and labelled q 1,  q 2 ,  etc. Just as with cosh v(z), sh v(z) 
must also have as zeros q ;  ', q; ', etc. sh(v) is positive real on the unit circle so it has no 
zeros on it and passing round it causes no change in the argument. The arguments that 
were applied to cosh v(z) can equally well be applied to sh v(z) and the corresponding 



2168 J S Denbigh 

results are listed below 
m n sh(v,) = n ( l - ~ ; ~ ) ~  eNuo 

4 e -  k =  1 

30 n sh(v,) = n (1 + v iN) ’  eNuo 
q E Y +  k =  1 

for some u o .  

of (3.1) can be factorized and re-expressed to give 
It now remains to evaluate nqEY vq which equals ( I l q S Y  v i ) 1 1 2 .  The right-hand side 

vZ(2) = A(1-  zi; ‘)(1- z -  ‘i; 1)( 1 - zi, ‘ ) (1  - z -  y; 1). 

i l ,  (; 
that 1 < < Applying lemma 2 

C 2 ,  i; are the zeros of v2(z) and they may lie on the unit circle. I t  can be assumed 

s- 1 n V 2 ( Z j )  = A y 1  - Z ; ( ; N ) (  1 - Z p y ) (  1 - Z ; i ; N ) (  1 - zoN5;”). 
j = O  

Hence 

Finally, whenever N 2 2 

It is easy to show from equation (2.2) that 

2 n  

All that remains is to prove that the above can be re-expressed in transfer matrix 
form. Now 

m a- n (1+x:) = 1 + 2 x;+ c (Xk,Xk2)N+ (XklXk2Xkl)N+etc, 
k =  1 k =  1 l k i k z )  (k ikzk3)  

if Zp= lx:l is convergent. Here X(k ,k2 ,  ,.k,) means that the summation is taken over 
every possible unordered set ( k l k z .  . . k r ) .  

It has already been stated that Z.lt;NI and X l v - N l  are convergent for N 3 2. Hence 
Z ,  must be a transfer matrix form. 
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Taking the case when IBJ < 2\51, So = 1 and expanding 

z x 2 - N  = eN“[l +(t:)-N+ 4(5142)-N + etc] + S y  eNb[l + 2(i1ql)-N + etc]. 

(3.10) 

If one regards the quantities such as (2e”t; ‘ 5 ;  ’) as the eigenvalues of some transfer 
matrix then most eigenvalues must have a high degree of degeneracy. 

4. A more detailed study of the position of the zeros 

4.1. A conformal mapping from p to z 

Equation (3.2) makes it possible to say what the values ofp are when cosh v(z) and sinh v(z) 
are zero. As v takes the values kin/2 and k increases from 0 to 00, v 2  travels along the 
negative real axis from 0 to  - 00. Equation (3.2) maps this line onto a curve, R, in the p 
plane. The zeros correspond to points on this curve and it is clear from equation (3.2) 
that as temperature tends to  zero, R is unaltered but the points become closer together, 
forming a continuum in the limit. 

Below, R will be examined in various cases and also its map, 1, in the z plane. Help 
is obtained from equation (3.3) as z + CO. 

4.2. When y < I 

This is when the X and Y interactions are both ferromagnetic or both antiferromagnetic. 
Typical R and 1 are shown in figure 1. The arrows indicate the direction of travel as v2 
goes from 0 to - 00. The multiplicity of directions is due to the two signs of 

[ y 2 B 2  -( 1 - y2)(452y2 - v2/p2)]”? 

Figure 1. When y < 1. 

If IBI < (1 - y2)1/221JI the path starts at points such as Y and all the [,t, q are complex. 
If IBI > (1 - y2)”221JJ, the path starts at points such as Z and some of the earliest (, 5, q 
are real. Thus i l ,  C2 are Y, , Y, or Z ,  , Z ,  depending on which case. When the external 
field is zero all the zeros lie on the imaginary axis. 
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4.3. When y > 1 

This is when the X interaction is ferromagnetic and the Y interaction is antiferromagnetic 
or vice versa. p and z must obviously remain real on R and x .  Typical R and x are given 
in figure 2. Whatever y, p on R may not enter the region - 1 < p < 1 because this would 
imply a real value of q, and if q is real v2 2 0 by equation (2.3). 

Figure 2. When y > I 

4.4. When y = I 
In this case the Y interaction nearly vanishes. If B = 0, then by equation (3.2) 

( (4J2y2 - vz/p2)) ' I 2  

4J2(y2 - 1) p =  * 
As y -, 1, p -+ CO and so do all i, 5, q. Equation (3.10) degenerates into 

Z = zN(eNa+ S y  eNb) 

which is the well known Ising solution. 

field. From equation (3.2) 
Suppose B # 0. This corresponds to the Ising interaction with transverse magnetic 

B &YE[  1 - ( 1  - y2)(4J2y2 - v2/p2)/(2y2B2)] 
2J(1-y2) P" 

If the positive sign is chosen p -, CO as y -, 1, and the corresponding i, 5, q make a 
neglibible contribution. Taking the negative sign, 

All the i, 5, q are real and if B and J have the same sign they are positive, otherwise 
negative. 

4.5. The  grand partition function and its poles 

N o  may be taken as two in the definition of the grand partition function. The dominant 
pole is at *e-. which is on the positive real axis. In the case where y 2 1 all the [, 5,  q 
are real and the poles are real. If y < 1 and B = 0, then as has been shown, all the i, 5, q 
are imaginary, and since the expansion (3.10) only involves even powers of i, 5, q all the 
poles must be real. If y < 1 and B # 0 then complex poles become possible. All the poles 
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up to some number, p, say, are real and it is seen from equation (3.2) and figure 2 that p 
increases with B. It is also clear from equation (3.10) that as r increases the distribution 
of poles in the ring r < IwI < r + A becomes more uniform. 

The second dominant pole is either at isl edb  or at e-”. It can be shown that for 
small B and fl that the first is the more important of the two. 

5. Summary and discussion 

5.1. Summary 

In $ 2 the partition function for the X Y  model was stated and discussed briefly. In $ 3  
this was re-expressed by the formula (3.7) where a and b are given by expressions (3.8) 
and (3.9). (, t, q are solutions of the equation 

V: = ,!?2[82+4JZyZ-2BJ(~+~-1)+J2(l-y2)(~+~-’)2]. 

c l ,  cz are the solutions when vq = 0, the { k  are the solutions when vq = ( k +  1/2)in and 
the qk are the solutions when vq = kin and k # 0. The equation has four solutions, two 
of which are reciprocals of the others, and those two chosen such that 1 t k l  > 1, Iqnl > 1, 

Equation (3.7) can be expanded to give a transfer matrix form as in (3.10). A grand 
partition function was constructed which has only simple poles. It was shown that the 
poles move closer together as the temperature approaches zero and that for zero external 
field or y 2 1 they are all real. 

I r k 1  2 1. 

5.2. The X Y  model with modijied boundary conditions 

A simpler problem than that above can be chosen by closing up the chain with a slightly 
different bond from the others with Hamiltonian equal to - U ( C ~ , , , ( T , ~  + ( T ~ ~ C ~ ~ ) .  The 
Hamiltonian for the whole system in terms of Fermi operators is now cyclic as it was 
not previously and it is no longer necessary to introduce projection operators. This 
problem is called by Lieb et al (1961) the c-cyclic problem as opposed to the a-cyclic 
problem which was solved in $ 2. The partition function is simply 2” IIqdp- cosh(v,). 
This is also a transfer matrix form but the poles due to the ( and q are entirely absent. 
On the other hand, there is no cancellation of odd powers of tl, t2, so there are many 
poles present which were previously absent. A similar problem has as partition function 
2” l l q ,  + cosh(v,). 

The author does not know of a solution to the open X Y  chain. The question is 
raised as to if it has a transfer matrix form whether it would have many poles in common 
with the closed chain. It is well known that if there is any ordinary type of transfer 
matrix that the poles are independent of the boundary condition, although the residues 
are not. 
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